Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda

Authors

Chun-Hong Cheng, Kwan-Long Wong, Jing-Wei Chin, Tsz-Tai Chan and Richard H. Y. So

Publication date

20 September 2021

Abstract

Heart rate (HR) is one of the essential vital signs used to indicate the physiological health of the human body. While traditional HR monitors usually require contact with skin, remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes of skin through a video camera. Given the vast potential of this technology in the future of digital healthcare, remote monitoring of physiological signals has gained significant traction in the research community. In recent years, the success of deep learning (DL) methods for image and video analysis has inspired researchers to apply such techniques to various parts of the remote physiological signal extraction pipeline. In this paper, we discuss several recent advances of DL-based methods specifically for remote HR measurement, categorizing them based on model architecture and application. We further detail relevant real-world applications of remote physiological monitoring and summarize various common resources used to accelerate related research progress. Lastly, we analyze the implications of research findings and discuss research gaps to guide future explorations.

 

For full article, please visit this link:

https://www.mdpi.com/1424-8220/21/18/6296

Another
Research

Optimizing Camera Exposure Control Settings for Remote Vital Sign Measurements in Low...

Read more

Deep learning-based image enhancement for robust remote photoplethysmography in vario...

Read more

Camera-based heart rate variability and stress measurement from facial videos

Read more